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THE ASYMPTOTIC VARIANCE OF HIGHER ORDER CROSSINGS

By Benjamin Kedem and George Reed

1. Introduction

The computation of the variance of the number of axis crossings

by a stationary process entails technical difficulties in both the

continuous and the discrete time cases. What makes this problem

so intractable is that the variance is expressed via quantities which

involve conditional intensities and fourth order orthant probabilities

which are difficult to compute. This is so even in the Gaussian

case. See Cramer and Leadbetter (1967), Sec. 10.7, Cox and Isham

(1980) pp.33,87, Kedem (1980) p.68 . On the other hand when the

process is sufficiently oscillatory, it is possible to estimate the

variance under suitable conditions by a simple expression. This is

shown here by examining the variance of the higher order crossings.

The notion of higher order crossings has been introduced by

Kedem and Slud (1981), (1982) as follows. Let [Z }  be at t=-OD

stationary discrete-time process and define a sequence of binary

processes by

( i if V k-l zt  
0

((k) ( i k 1,2,...,
t 0 otherwise

where V is the backward-difference operator, VZ t  Zt - Zt I .

Then

(2) D N- I(X (k) 9 x(k)]
k,N I t+l t

t=l

. -'. , .. , ... .... + ,.. .. .. ". -. '. . . . .. . . . .''-. .-.. . . .". .".. . . .". .-.. . .-.. . . ..". . .."... .. ..•. . ..". ."." .' ' -' ' ' '- " " " ",-"""
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. N

is the number of axis-crossings by {Vkl Z tN, and is called
t~tl

the (number of) higher order crossings of order k associated with

{Z }. The main result of higher order crossings is (Kedem and

Slud (1982)) The

Higher Order Crossings Theorem (HOCT): If {Z is a strictly
.~ - t

stationary process with finite variance and P (Zt  Z Vt) = 0 and

if the spectral distribution function F satisfies the condition

dF(w) > 0 then

.... 01010101 ... with probability 1/2(i) { ) . 10101010.. with probability 1/2

t ... .10101010 ... with probability 1/2

(ii) lim lim N 1  = 1 with probability 1.
k-sm. i ND,

Thus we see that Dk,N  eventually increases with k for sufficiently

large N. This monotone property of higher order crossings can be
associated withthe amount of information they carry as exemplified

in Kedem and Slud (1981), where a discrimination statistic made of

higher order crossings is introduced. However the HOCT does not

tell us the rate of increase in the D k,N  The present paper

provides a refinement of the HOCT in that we establish under some

conditions the rate of decrease in Var(D , ) as k for
k,N

fixed N. The fact that this variance should decrease is apparent

from the HOCT since the probability of two consecutive l's in

IX W )} IN approaches zero. More precisely, define the intensity

aueociated with {X Wk)

(3) AW P(X W lx(k) 1), 1,2,...• t t-

.°% ~ ;;. < * *. * . .

0. . .l. .
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Then our main result states that

Theorem 1. Let {Zt I be an m-dependent stationary Gaussian

sequence. Then for fixed N

(4) limVar(D ), 1
k-' k (N-I 1.

The limit (4) certainly holds for any finite moving average. An

explanation of (4) is provided by the intuition that by the HOCT,
' .(k)

IX W "becomes Markovian" and X1 M 0 as k - . Note that if

[X kM is truly Markovian then Var(D k,) (N-)W (1-A

kyields (4) when A approaches zero. See Kedem (1980)

Chapter 3.

k- 1
Since for moderate and large k, [V Z t becomes oscillatory,

i.e., DkN is large, it is apparent from the HOCT that (4) sheds

a great deal of light on the behavior of the variance of D01 1,N
(number of axis crossings) for oscillatory processes. It should

be noted that (4) is not entirely intuitive since in general we have

Var(D ) (N-l)Var( Dk n
kN N-" < W)

(N-I)X W1 A1

for all k, and for N 2. Other than N = 2, this general

bound has little resemblance to (4). On the other extreme, many

simulations with low order autoregressive moving average processes,

at least for small k, suggested that the limit should be close to

zero. It is only as k increases that (4) holds. It seems to us

therefore that for large k, in lipht of our earlier comment, tlic

0p



4.4

assumption that {X W is approximately Markovian is not entirelyt

unrealistic as it immediately leads to (4). In this paper however

this assumption is not made.

The proof of Theorem 1 is carried out by first proving a series

of lemmas. In Section 2 we establish a two sided inequality while

in Section 3 we construct certain continuous differentiable functions

which establish the rates of convergence of the correlations of

{ k z t  as k w.

,{vz

'2:

.4r

,, ,.9 o . . o • . . . . ..

S,,. -,. ' f,., .,,.. .. . .. . . . - . - .. . . .. .. - .. - - , ,. . " . " , . - . . . . - ,. . . ,
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2. An Inequality

In order to prove and motivate Theorem 1 we need to establish

a few basic facts concerning axis crossings by Gaussian sequences.

From now on it will be convenient to suppress k in AW. and in

Xk) and we shall simply write X. and X with the understanding
t J

that both quantities depend on k.

First observe that D can be written as a sum

kN

(5) D k Nd 2 d 3+.. .+ d N

where

(6) dt Xt + Xt_1 - 2Xt Xt_

and is also a function of k since X t  is.

Lemma 1. Let 1Z I be a stationary Gaussian process. Then
t t=_0

uniformly in t

(7) Cov(Xt_j,d ) 0, j = 0,±1,....

Proof. The Gaussian assumption implies that

Cov(Xt.i,Xt+X -2XXt) [I -E] + [ _
t t-1 t t-2 4  2 j-l 4

1 1

by noting that - + Sin -  p where p, is the correlation

function of {Z t. (See Kedem (1980), p.33.) The orthogonality

3'olation (7) implies that X and d are independent since

both variables are binary. We can Iherelore r*,writc Lcmmai I au

7. . .
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,. Lemma 1'. Let {Zt t:_ be a stationary Gaussian process. Then

(8) Cov(g(Xt_.),d ) 0, j = 0,-+,....

for any function g.

Next we examine the relation between Xt_jXtj+ 1  and dt -

Unlike the orthogonality relation (7) the covariance between the

last two quantities cannot be evaluated directly but may be

approximated. Without loss of generality we will focus on

Cov(d 2, XtXtI)

Lemma 2. Let {Z 00 be a stationary Gaussian process. Then

t t=-0

we have the two sided inequality

1 1 1 X 1 2 1 +1 1 +I 2)
9 max( t--1  4t-3-2 1 2 1 - t-i 4 At-3 -2 1  2 1

-E Cov(d 2 ,XtXt 1 ) 1 X2

.'Xt t - 2 1

Proof. First note

Cov(d2XX ) = Ed2XtX - Ed EX X - (EX X )(1-Ed = 2 1

Fcr the left hand side we have four cases corresponding to the

"1removal" of either X1  or X2  or Xt  or X t 1 . Thus for

example if we "remove" X1  we have

-2EX X X X t -2EX X X -2[--+ 1 +- + 1 A I
1 2 t-1 t 2 t-1 t 4 4 t-3 4 t-2 4 1

f io
'.. from which follows that

...........................
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14ii + t2 1 1 1
Covf~ V ~ 1+ A + 1 A ]+ [ +-A +-2'XtXt-l 4 4 t-l 4 t-2 4 4 t-2 4 t-3

2 2 t-3 2 t-2 2 1 2 1

1 + 1X12
4 t-i 4 t-3 2 1 2 1

and similarly for the other three cases.

Now observe that in general

(10) Var(d t ) = XI(1-A )

and therefore by Lemma 1, Theorem 1 is proved if we can show that

Cov(d s,XtXt I  = Cov(d sdt) = o(A ) for arbitrary t,s. However

this is not immediate from Lemma 2 and requires some careful con-

siderations to be discussed rigorously in the following Section.

It should be made clear though that (9) is instrumental in proving

that Cov(d s,d ) o( ). We can support this claim by resorting

to an example heuristic in nature.

Example 1. Assume X is Markovian. Then A. = - + 1(2Xl-l)
t j 2 2 1

and so

i iA (A-l)(2All)t-3
4 tlt32 1 1 1

Then the left hand side of (9) becomes

Cov(d2 ,XtXtl) max(. Xl(Al-l)(2 Xl_)t-3 I X 2

1tl 2_t-3 i l12 V

1-A(A -1 A +- A 2) O(A )
2 11 221 1

'-7--. - o - a - -

' , ; ~~~~~~~~~~.....-T..=... .,..-,. .. ,,... ............. " "" "......'".... .. "
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.1

since _X 1  is always eliminated from one of these las* two2 1

expressions regardless of whether t is odd or even. Thus for

a Markovian Xt  (9) and Lemma 1 imply

(11) Cov(d 2 ,dt) = o(Xl)

Another indication that (11) is plausible is furnished by the next

numerical example.

Example 2. Assume {Z t  is a Gaussian white noise. Then

(12) 1 + 1 Sin (k
1 2 ir k+l

and

(13) 2 .1. + Sin -  l+2 2kl
2 i((k+l) (k+2)

Incidently, here we see the direct dependence of A1,A2 on k.

Now define X* by2 b

(14) 2* + ! Sin-l[_ 1 +2 (k) 2]

2 2 nk+1

We maintain that as k approximates A very closely.
manan htas - 2  2

This can be best seen from the following calculations.

k A I A* A X A*
3 2 2 1 2- 2

10 0.97155556 0.97154135 0.001422932 0.00001421

X 103 0.98726994 0.98726865 0.00636567 0.00000129

10 0.99099766 0.99099720 0.00450140 0.00000046

10 0.99715295 0.99715295 0.00142353 0

106 0.99909968 0.99909968 0.00045017 0



N.

We see that as k the white noise case implies

(15) A2  = A* + o(A1 ).

This can also be verified directly from (12)-(13). It follows

that as k -

A + .1 Sin-( 1  2 P2) + (A)
2  2 1

. 1 + i Sin-l(_l 2+( o + ox
.1 1 12

2 r(-- A )] + o(

= 1 - 2X1 + O(X ).

But in general, for any Gaussian stationary sequence

(17) Cov(dtdt+l) - + A + -2 -
2

2 1 2 2 V*

and so, in the white noise case

Cov(d ,d ) = ° 1) 2 o(A
t t+1 11

This example indicates that we may also have Cov(dt,d ) = o( ),st 5

s 9 t, for any two terms in (5). However the proof of this

assertion requires the establishment of some further facts and

the use of (9).

... ... ... ... .., -....... . . ._ _ _ - ,... . . .. .



3. Proof that Cov(dt,d s ) = o())

As stated in Section 2 it is sufficient to show

Cov(d 2,Xt Xt_) = o(XI) in order to complete the proof of the

theorem. From (9) it is clear that Cov(d 2,XtXt I ) o(A ) so

the problem reduces to showing o(A1 )  Cov(d 2,XtXt) using

the left hand side of (9).

(k)
It is more convenient at this point to express A k in terms

of the correlations of the kth differenced process, p t,k From

Kedem (1980) we have A (k)= 1 + - sin-1p Ignoring the 1
t 2 7r t,k' Igoig1h

term in (9) and suppressing the k, it will be sufficient to show

(18)

im-s sin-l1 -- sin- -t- sin p i)/( + sin-pl) Qlim(- si - - 7 2) )l)/2

k-+o 41 inPrt- 3 2n 1 r 1

or

(19)
1 .11 .- i 1 1 si-i 11 . -1

lim(-- sin-lpt +- sin P- j - Pl)/( + - sinp) = 0.
t-co 4 TrTt-3 27r1 1

The solution involves two ideas. First treating all functions

of interest as functions of pl k since this is the basic varidble

at hand as is apparent from the HOCT, and secondly, circumventing

the problem that both numerator and denominator in (17), (18) go

4 to zero by constructing an equivalent limit with continuous differ-

entiable functions and using l'H6pital's rule.

The following lemmas will show how to construct the equivalent

limit by replacing Pt k with an appropriate function. Firstqt'k

define the following notation associated with thme k'th and

(k+l)'st differences.

'0

a,

a,

c :[ , '.. . . . ., . ..". . . ..". .." ' ' , . . . . . .. . . . . . . . . . . ...h -'ham/" lkn Wmmwl "ml m 'a'
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.'2: PV,k =P1lk+l

V,k 'r,k+l

RV,k = -P

l,k+l l,k

C1  cl[-lpl1 ] set of continuously differentiable functions

on the interval [-l,p I I

Again, as above, whenever it is not confusing the subscript k

is suppressed.

Lemma 3. If lim RVk exists then for each sequence of ordered

pairs {(p r fixed integer 2, there exists a

function p (p1 ) E C1  such that

Mi) pr(Pl,k) P r,k"

dp
(ii) lim r - a is independent of the function

Pi) -lm+ dp - r

constructed.

(iii) a satisfies the difference equation:r

at+ 1 - 2ar (1-2a 1  + a 1  = (-1) r2 where

dp~
aI  lim+ dp

a0  = I).

a0

' Note that P1  is but at the same time it is used as the

variable of differentiation. Also, a1  is defined differently

from a2 ,a3,...

2............" --.'. ". . ".""'-"........ ....- - "- . • .- "- ..... "". .
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Proof. We first construct p.(p ' from the pairs

{(Pl,k'PV,k ) } kl and then the other functions will be produced

inductively.

By a direct computation we have lim P -1 and it has also
k-,. lk

been shown that {P l,kIkl is a strictly decreasing sequence

(Kedem (1982)) to -1. In what follows the two equivalent notions

of k - - and P1 - -1 are used interchangebly without loss of

generality.

Since {P k is strictly decreasing, for any finite set of
l,k k~1

values {(Pl,ksPV,k k=l we can construct a function

(n) 1
T1 E C EP such that

.(n) (P PV and

:. [.~ l, k kV": o (P
d n n 

e 

)
dfl R Vk

P- V~k

If we let r n+l)(P be the extension of r(n (Pl then we can

define

PV rn n) (P ) for p1 E (-l,p 1]
~n -

and P V(-) = lim pV(Plrk)  lim + pv(OI )

dPv . dP V

U and d-(-l) lim R lim

(n) ) Vp) C(lp n

By the construction of rv (P), 1P(P ) E C,(-l'p and1 dPv

since pV (-) is well defined by the HOCT and -(-1) is well
dp1

defined by our assumption lim R exists, then p7(pl) E C'.V,k V1
U,

.. .%U°. ~...
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To see that 11m is idependent of the construction

of PV(Pl )  note that any C1  function satisfying (i) must
do V

satisfy -lim dp lim RV,k This is so simply since by con-i dpdp p , <

struction for every E3K for k > K IRVk - d P )I <

And so lim Rv is independent of the construction of p
k-co

We can now define the functions pr(pl). Since

PV (2p 1 -P 2-1)/2(1-pl) we have

2,k 2  ,k) V,k l,k

So we can define

S(20) P2 (Pl)  =-2(l-Pl)pV(pl) + 2p, - 1.

In general, assume the existence of pr- (P1),Pr2(Pl E C'. Then(r)

from the fact that p( U ( P)/2(l-p we obtain

),j.P r~ k -2(- p , (r-] ) + 2p

" = 2-iPl,kPV,k r-l,k -r-2,k

and we can define

r -1 P ~ ( l ) _ P _ ( l(21) p r(P ) 1 -2(I-Pl)P V (P 1+2 l P1 Pr2(

where pV pl E C can be defined since we can always construct

a function - 1p using the same sequence of pairs and the samePV

constructions that we used for pr(P, so let P (r- 1)r- Vri
p1(Pl)) a composition of C1 functions.

:1.... . .o. .......-..--.....: .. .. ..-. -........ . .......
f ... . ft. *,. . . .. , , . .,, _ ,- . ' -.'t. ..', ._' ".- f.'. . .- - -.-..
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Hence for each r there exists pr(o ! ) satisfying (i) and

(ii). To generate the difference equation in (iii) consider

IPr ) = -2(1-p 7 1P + 2pr(p) - P pl )

Differentiate

dp dpr rp
r+1 (___) r-l

dPrl _ 2p V r)(p l) v dp dPdp1 d 1  dpl dpl dpl

• . and take the limit as p1  -1

• - dpv

(22) ar+1 = 2(-l) 4( lim+ r + 2a - a
r+ dp1  r r-1*

d(r) .(r)
dpV dPV dPv

We can write - but note thatdp 1  dP V  dO 1

d., dp dp (r)
lim lim r or lim + ara and therefore

pi -).-i dpv p).l- dpl p-)- dpl r 1

(22) becomes

ar+l - 2(-l) r 4ara + 2a -ar_ 1

r~lr 1 r -

which can be rewritten to give the difference equation in (iii).

This completes the proof of Lemma 3.

r+l 2
," Lemma 4. If lim RV, k = 1 then a (-1 r

k-oVkr

Proof. lim Rv k 1 means a 1 so that the difference equation
V~k 1

becomes:

a r+l + 2a + a = (-l)r2.rl r r-l

r+l 2
A specific solution is a = r'. The general solution

"-r
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to the homogeneous equation a,-, + 2a + a - 0 isr r-1

a(-l) r + 8(-)r r

But using (20) a2 = -4 and using (21)(or simply (22) with

r = 2) with r : 3 a3 = 9. These conditions result in a = 8 0

and thus a : () r+l  2
r - r

Lemma 5. lim RV,k = 1 if the process is m-dependent.
k-ao

Proof. The result can be derived from the expression for pl,k

given in Kedem and Slud (1981):

((2kl) + pl[(2k) ,2J' .. + (-l) kpk+1
(k- k )2 k-2-

1- 2 k + + kk .k-i

For white noise, it is a straightforward computation since
k

Pl1k k In general if p. = 0 for i > m, let k > m so

that there are no new correlation terms in (23) as k increases.

Then Pl,k+l - Pl,k can always be written as the quotient of two

finite polynomials in k: P (k)/P 2(k). Since there are no new

terms in the expression, as k increases, then pVk+l - PVk

will be the quotient of the same two polynomials only in k + 1:
Pl(k+l) P2 (k )

P (k+l)/P (k+l). Hence R 1 2 and since these
1 2 V~k P Pk VTk+l) n ic hs1 2

are finite polynomials in k, lim RV k  1
k 

9

With these results, it is now possible to evaluate (18) and

(19). If t is even consider (18). Using Lemma 3 we can write

.b "."" ''' ." "- '" ", . ' "' " " ", '- .. - ""° . '' ' . " "' , ,', , ', " , .". , '



,: J -' < " ,,*- ,,t - .
"  

o . . . .... . .. ...* .. . . . -.. "- -' .o . . . . . . • . . • . .,

16,4.

an equivalent limit by replacing pt,k with pt(P and considering:

(24)

sin p(p)_- s s in- 1 )(+- Pi).+ t-4r t- 3 n 1 2 sinl
V1

Using l'Hopital's rule:

1 dpt_ 1 1 dpt- 3  1 1
2dp l 4 - dp l 2 -

,", 2 2i" Pt_ t17
(25) lim+

p1 -i 1

1- 2

This limit can be evaluated if we assume m-dependence. Using

1-p2
Lemmas 4 and 5 we note that lim + 1 lim +

+. 2 + dpPl-1 I-Pt Pli 2p t

Hence, lim + - Thus (25) becomes:
P 1-2 ,Ia~

(26)1 at- at-3 1(26) " /la_l I  #/at-31

When t is even

a 1  +(t-l) 2 +(t-3)

and (26) equals

(t-1) I (t-3) 0 .

When t is odd a similar computation shows (19) reduces to zero

as well. So for all t Cov(d 2 ,XtXtl) O(). 1 This completes

the proof of the theorem.
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Since by Lemma 5 A1 1

!Corollary 1. Under the same conditions as in Theorem 1

..; Co (D Dk
lim kN Dk+lN 1rn(k) -- i

. k-*  (N-1)A 1

Proof. Use Cauchy-Schwarz inequality.

As the m-dependence assumption was used only in showing thit

RV,k * 1, k - -, it is clear that the theorem can be extendedLV4k

*'" to cover a more general case for which this requirement still holds

provided pj approaches zero fast enough. We conjecture that

Theorem I holds true at least for stationary autoregressive moving

average Gaussian sequences. The proof of this requires a more

careful examination of (23).
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